The Transformer architecture

COGS 150 Sean Trott

Winter 2024

A brief <u>taxonomy</u>

- Many approaches to language modeling.
- All revolve around **statistical learning** in some way.

A brief <u>taxonomy</u>

- Many approaches to language modeling.
- All revolve around **statistical learning** in some way.

Lecture plan

- "Attention": high-level introduction and motivation.
- The transformer architecture—is attention all you need?
- The advent of "pre-trained LLMs".

Lecture plan

- "Attention": high-level introduction and motivation.
- The transformer architecture—is attention all you need?
- The advent of "pre-trained LLMs".

RNNs: recap, and limitations

- A recurrent neural network (RNN) has at least one recurrent connection, which acts as a kind of "memory" of the context.
- RNNs work pretty well, but do have limitations.

Limitation #1: Vanishing/exploding <u>gradient</u>.

Limitation #2: Training is hard to <u>parallelize</u>.

Recurrent structure makes it hard to process many batches in parallel—harder to take advantage of compute.

Attention is a mechanism that—metaphorically—allows an LLM to "focus" (or "attend") on specific elements in a sequence.

• Often, accurate predictions depend on words from a while ago.

Check the program log and find out whether it ran please.

Check the battery log and find out whether it ran down please.

Attention is a mechanism that—metaphorically—allows an LLM to "focus" (or "attend") on specific elements in a sequence.

• Often, accurate predictions depend on words from a while ago.

Check the **program** log and find out whether it **ran please**.

Check the **battery** log and find out whether it **ran down** please.

...whether it ran ____

Knowing what comes next depends on looking <u>far back</u> in the sequence.

Attention is a mechanism that—metaphorically—allows an LLM to "focus" (or "attend") on specific elements in a sequence.

• Often, accurate predictions depend on words from a while ago.

Check the **program** log and find out whether it **ran please**.

Check the **battery** log and find out whether it **ran down** please.

...whether it ran ____

Knowing what comes next depends on looking <u>far back</u> in the sequence.

Attention is a mechanism that—metaphorically—allows an LLM to "focus" (or "attend") on specific elements in a sequence.

- Often, accurate predictions depend on words from a while ago.
- This also helps identify <u>relationships</u> between elements in the sequence.

The animal didn't cross the street because it was tired.

Attention is a mechanism that—metaphorically—allows an LLM to "focus" (or "attend") on specific elements in a sequence.

- Often, accurate predictions depend on words from a while ago.
- This also helps identify <u>relationships</u> between elements in the sequence.

The **animal** didn't cross the street because **it** was tired.

But how does this actually <u>work</u>?

The advent of "attention"

Attention is a mechanism that—metaphorically—allows an LLM to "focus" (or "attend") on specific elements in a sequence.

- Often, accurate predictions depend on words from a while ago.
- This also helps identify <u>relationships</u> between elements in the sequence.

Attention: the origins

- Originally, attention was developed to help with **machine translation**.
- Traditional, RNN-based translation models had a "bottleneck" in their design.

Attention: the origins

- Originally, attention was developed to help with **machine translation**.
- Traditional, RNN-based translation models had a "bottleneck" in their design.

Attention: the origins

- Originally, attention was developed to help with **machine translation**.
- Traditional, RNN-based translation models had a "bottleneck" in their design.
- Attention is a mechanism for putting all those hidden states into a single fixed-length vector—by focusing on what's most relevant.

Dot-product attention: implements "relevance" as *embedding similarity.* To illustrate this, let's look at an example from a domain we're already familiar with—language modeling.

The cat sat on	"on"
	⁻ he
	cat
	sat
	on

The cat sat on	"0	n"		
V1	The			
V2	cat			
V3	sat			
V4	on			

The cat s	sat on	"0	n"	
	V1	The	.2	
	V2	cat	.1	Numbers made up for illustration
	V3	sat	.1	purposes!
	V4	on	1	

The c	at sat on	"0	n"	$\sigma(x)_j = rac{e^{x_j}}{\sum_k e^{x_k}}$	
	V1	The	.2	.2	
	V2	cat	.1	.18	Now, we soft-max these values to
	V3	sat	.1	.18	create a probability distribution.
	V4	on	1	.44	

The c	at sat on	"0	n" w * c	$\sigma(x)_j = rac{e^{x_j}}{\sum_k e^{x_k}}$		
	V1	The	.2	.2	These are our	
	V2	cat	.1	.18	attention weights.	
	V3	sat	.1	.18	Each represents the	ē
	V4	on	1	.44	"relevance" of V _n to "o	n".

In **dot-product attention**, the dot product between every pair of words is used to build a custom, context-dependent vector.

Now, compute **weighted average** over all hidden states—using these <u>attention</u> <u>scores</u> as "weights"!

$$\mathbf{c}_i = \sum_j \alpha_{ij} \, \mathbf{h}_j^e$$

In **dot-product attention**, the dot product between every pair of words is used to build a custom, context-dependent vector.

Use attention weights to create new **context vector**.

Now, compute **weighted average** over all hidden states—using these <u>attention</u> <u>scores</u> as "weights"!

$$\mathbf{e}_i = \sum_j \boldsymbol{\alpha}_{ij} \, \mathbf{h}_j^e$$

In **dot-product attention**, the dot product between every pair of words is used to build a custom, context-dependent vector.

Predictions are now <u>weighted</u> by different elements of the sequence depending on their "relevance".

Now, compute **weighted average** over all hidden states—using these <u>attention</u> <u>scores</u> as "weights"!

$$\mathbf{e}_i = \sum_j \boldsymbol{\alpha}_{ij} \, \mathbf{h}_j^e$$

In **dot-product attention**, the dot product between every pair of words is used to build a custom, context-dependent vector.

In theory, we can do this at <u>each</u> <u>layer</u> of a neural network.

But the dot product is still a pretty <u>coarse</u> measure of attention.

Can we do better?

Lecture plan

- "Attention": high-level introduction and motivation.
- The transformer architecture—is attention all you need?
- The advent of "pre-trained LLMs".

Introducing transformers

The **Transformer** is a neural network architecture that uses <u>multi-head self-attention</u>, with no recurrent units.

- Use a fixed context window.
- No recurrent connections.
- Use self-attention.
- Have multiple attention "heads" (multi-head self-attention).
- Use positional embeddings.

Introducing transformers

The **Transformer** is a neural network architecture that uses <u>multi-head self-attention</u>, with no recurrent units.

- Use a fixed context window.
- No recurrent connections.
- Use self-attention.
- Have multiple attention "heads" (multi-head self-attention).
- Use positional embeddings.

What do these aspects of a transformer remind you of?

A traditional **feed-forward neural** language model!

(Note: this is why you often hear about the "context window size" of models like ChatGPT, Claude, etc.)

Introducing transformers

The **Transformer** is a neural network architecture that uses <u>multi-head self-attention</u>, with no recurrent units.

- Use a fixed context window.
- No recurrent connections.
- Use self-attention.
- Have multiple attention "heads" (multi-head self-attention).
- Use positional embeddings.

These are new concepts—let's focus on **self-attention** first.

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and <u>shared</u>, informing the model's predictions.

Query (Q): representation of current word, used to score against all other words in sequence.

Key (K): labels for other words in sequence, which we "match" against in our search.

Value (V): represent the "content" of each word, which are weighed by attention scores.

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and <u>shared</u>, informing the model's predictions.

Query (Q): representation of current word, used to score against all other words in sequence.

Key (K): labels for other words in sequence, which we "match" against in our search.

Value (V): represent the "content" of each word, which are weighed by attention scores.

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and <u>shared</u>, informing the model's predictions.

Here, we're looking for words that are relevant to "it".

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and <u>shared</u>, informing the model's predictions.

Here, we're looking for words that are relevant to "it".

Key for each word is like a <u>label</u> for "folders" in a filing cabinet. A robot must obey the orders given it...

Query #9

it

value #4

robo

obe

value #3

value #2

alue #1

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and <u>shared</u>, informing the model's predictions.

Here, we're looking for words that are relevant to "it".

Key for each word is like a <u>label</u> for "folders" in a filing cabinet.

Values are the <u>contents</u> of those filing cabinets.

A robot must obey the orders given it...

Key #1

Query #9

it

value #4

robo

obe

value #3

value #2

value #1

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and <u>shared</u>, informing the model's predictions.

To compute **attention score**, multiply <u>query</u> by <u>key</u> vectors for each pair.

 $\operatorname{score}(\mathbf{x}_i,\mathbf{x}_j) = \mathbf{q}_i \cdot \mathbf{k}_j$

(We then **normalize** and **soft-max** these scores to get a probability distribution.)

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and <u>shared</u>, informing the model's predictions.

To compute **attention score**, multiply <u>query</u> by <u>key</u> vectors for each pair.

Now, multiply (and sum) attention scores by <u>value vectors</u>.

$$\mathbf{y}_i = \sum_{j \leq i} lpha_{ij} \mathbf{v}_j$$

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and shared, informing the model's predictions.

To compute **attention score**, multiply <u>query</u> by key vectors for each pair.

Now, multiply (and sum) attention scores by value vectors.

$$\mathbf{y}_i = \sum_{j \leq i} \alpha_{ij} \mathbf{v}_j$$

	Word	Value vector	Score	Value X Score	
	<\$>		0.001		
	а		0.3		
S	robot		0.5		
	must		0.002		
	obey		0.001		
	the		0.0003		
	orders		0.005		
	given		0.002		
This is our	new conte	0.19			
emb	edding for	Sum:			

In **self-attention**, the <u>relevance</u> of each word to each other is calculated <u>in context</u> and <u>shared</u>, informing the model's predictions.

Ν

We compute **attention scores** between each word w_t and every word that comes before it.

In an **auto-regressive model**, we prevent attention from "looking ahead" at future words.

q1•k1	-∞	-∞	-∞	-∞	
q2•k1	q2•k2	-∞	-8	-8	
q3•k1	q3•k2	q3•k3	-8	-8	
q4•k1	q4•k2	q4•k3	q4•k4	-8	
q5•k1	q5•k2	q5•k3	q5•k4	q5•k5	

In terms of compute time, how "efficient" is this process?

It's **quadratic**—we must compute dot product between every pair of tokens in the input.

Ν

Self-attention: a closer look

Suppose we are computing **selfattention** for X₃.

The result is a <u>new embedding Y_{3} </u>. which "folds in" the relevant information from X_1 and X_2 into X_3 .

Self-attention: a closer look

Where do Q, K, V come from?

Self-attention: a closer look

During training, we also <u>learn weight</u> <u>matrices W^Q, W^K, and W^V,</u> which we multiply by input **X**.

 $\mathbf{Q} = \mathbf{X}\mathbf{W}^{\mathbf{Q}}; \ \mathbf{K} = \mathbf{X}\mathbf{W}^{\mathbf{K}}; \ \mathbf{V} = \mathbf{X}\mathbf{W}^{\mathbf{V}}$

Learned just like standard weights—by iteratively updating through **back-propagation**.

Self-attention: a closer look

But self-attention is just **one component** of the Transformer...

A **Transformer** "block" contains a self-attention layer, feed-forward layers, residual connections, and normalizing layers.

Self-attention: used to compute new, context-dependent representations for each token.

A **Transformer** "block" contains a self-attention layer, feed-forward layers, residual connections, and normalizing layers.

The **"residual connection"** projects directly from a lower layer to a higher layer, without passing through the intermediate layer.

To implement, <u>add</u> a layer's *input* to its *output* before passing it forward.

"dog" + Self-Attention("dog")

A **Transformer** "block" contains a self-attention layer, feed-forward layers, residual connections, and normalizing layers.

"Layer normalization" keeps the values of a hidden layer within a range that facilitates gradient-based training similar to a *z*-score. In GPT-2 and GPT-3, this FFN has two layers.

The Transformer "block"

Introducing transformers

The **Transformer** is a neural network architecture that uses <u>multi-head self-attention</u>, with no recurrent units.

- Use a fixed context window.
- No recurrent connections.
- Use self-attention.
- Have multiple attention "heads" (multi-head self-attention).
- Use positional embeddings.

We've now covered self-attention but what's "multi-head" attention? When we discuss **probing** and **mechanistic interpretability**, we'll talk about research trying to figure out what these heads actually do!

Multi-head attention

In <u>multi-head attention</u>, each layer has multiple attention "heads", each with their own set of learnable weights for producing queries, keys, and values.

Each "head" might learn to track different kinds of <u>relationships</u>.

<u>Over-simplified example:</u>

- Maybe one head tracks syntax.
- Another head tracks proper names.
- Another head tracks events...

Introducing transformers

The **Transformer** is a neural network architecture that uses <u>multi-head self-attention</u>, with no recurrent units.

- Use a fixed context window.
- No recurrent connections.
- Use self-attention.
- Have multiple attention "heads" (multi-head self-attention).
- Use positional embeddings.

Okay, but what about the **order** of tokens?

With RNNs, order is built into the structure of the network.

Transformers use **positional embeddings** to track order.

Positional embeddings track order

To represent order, input embeddings are combined with **positional embeddings** specific to each position in a sequence.

To learn, begin with random embeddings representing each "position" in a sequence (1, 2, 3, ...)

Positional embeddings track order

To represent order, input embeddings are combined with **positional embeddings** specific to each position in a sequence.

To learn, begin with random embeddings representing each "position" in a sequence (1, 2, 3, ...)

Once learned, we add <u>positional</u> embeddings with <u>word</u> embeddings.

Now, <u>composite</u> embeddings reflect both *word* and its *position*.

Introducing transformers

The **Transformer** is a neural network architecture that uses <u>multi-head self-attention</u>, with no recurrent units.

- Use a fixed context window.
- No recurrent connections.
- Use self-attention.
- Have multiple attention "heads" (multi-head self-attention).
- Use positional embeddings.

These are very complicated systems! Still lots to learn about why this architecture works.

One practical benefit is (so far) transformers are easier to train than RNNs.

Introducing transformers

The **Transformer** is a neural network architecture that uses <u>multi-head self-attention</u>, with no recurrent units.

- Use a fixed context window.
- No recurrent connections.
- Use self-attention.
- Have multiple attention "heads" (multi-head self-attention).
- Use positional embeddings.

Under the hood, ChatGPT uses a **transformer** model (plus some other stuff).

Introducing transformers

The **Transformer** is a neural network architecture that uses <u>multi-head self-attention</u>, with no recurrent units.

- Use a fixed context window.
- No recurrent connections.
- Use self-attention.
- Have multiple attention "heads" (multi-head self-attention).
- Use positional embeddings.

Under the hood, Chat**GPT** uses a **transformer** model (plus some other stuff).

GPT = Generative **P**re-trained **T**ransformer

So what's that "pre-trained" word mean...?

Lecture plan

- "Attention": high-level introduction and motivation.
- The transformer architecture—is attention all you need?
- The advent of "pre-trained LLMs".

Pre-trained language models

A **pre-trained language model** is a (<u>large</u>) language model that's already been <u>trained</u> on a large corpus using self-supervision.

- "Pre-training" just means training without a specific end goal in mind (besides word prediction).
- A "pre-trained" LM can then be adapted for specific purposes.
- Practically, it's helpful so we don't have to train from scratch!

This is what we'll talk about next time!

Pre-trained language models

A **pre-trained language model** is a (<u>large</u>) language model that's already been <u>trained</u> on a large corpus using self-supervision.

- "Pre-training" just means training without a specific end goal in mind (besides word prediction).
- A "pre-trained" LM can then be adapted for specific purposes.
- Practically, it's helpful so we don't have to train from scratch!

Summary

- Self-attention is a mechanism that allows each word to "look for" other words that are relevant in the input.
- This process creates new context-dependent vectors that share relevant information across the words in the input.
- Self-attention a key part part of the "transformer block", which also has other features like a feed-forward network.
- So far, transformers tend to work better than other models like RNNs, and are easier and faster to train.
- "Pre-training" involves training a model (like a transformer) on a large corpus to learn the "basics" of how language works.