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RNNs: recap, and limitations
§ A recurrent neural network (RNN) has at least one recurrent connection, which acts 

as a kind of “memory” of the context.

§ RNNs work pretty well, but do have limitations.

Limitation #1: 
Vanishing/exploding gradient.

Limitation #2: 
Training is hard to parallelize.

Recurrent structure makes it 
hard to process many batches 

in parallel—harder to take 
advantage of compute.



The advent of “attention”
Attention is a mechanism that—metaphorically—allows an LLM to “focus” (or “attend”) 
on specific elements in a sequence.

§ Often, accurate predictions depend on words from a while ago.

Check the program log and find 
out whether it ran please.

Check the battery log and find 
out whether it ran down please.
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The advent of “attention”
Attention is a mechanism that—metaphorically—allows an LLM to “focus” (or “attend”) 
on specific elements in a sequence.

§ Often, accurate predictions depend on words from a while ago.

§ This also helps identify relationships between elements in the sequence.

The animal didn’t cross the street because it was tired.

But how does this actually work?
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Attention: the origins
§ Originally, attention was developed to help with machine translation.

§ Traditional, RNN-based translation models had a “bottleneck” in their design.

§ Attention is a mechanism for putting all those hidden states into a single fixed-length 
vector—by focusing on what’s most relevant.

Dot-product attention: 
implements “relevance” as 

embedding similarity.

To illustrate this, let’s look at an 
example from a domain we’re already 

familiar with—language modeling.
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Dot-product attention: illustrated
In dot-product attention, the dot product between every pair of words is used to build a 
custom, context-dependent vector.
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Now, we soft-max these values to 
create a probability distribution.
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Dot-product attention: illustrated
In dot-product attention, the dot product between every pair of words is used to build a 
custom, context-dependent vector.

The cat sat on ___ “on”

The

cat

sat

on

.2

𝑤 ∗ 𝑐

.1

.1

1

.2

.18

.18

.44

These are our 
attention weights.

V1

V2

V3

V4

Each represents the 
“relevance” of Vn to ”on”.
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In dot-product attention, the dot product between every pair of words is used to build a 
custom, context-dependent vector.
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average over all hidden 
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Dot-product attention: illustrated
In dot-product attention, the dot product between every pair of words is used to build a 
custom, context-dependent vector.

Now, compute weighted 
average over all hidden 

states—using these attention 
scores as “weights”!

Predictions are now weighted 
by different elements of the 
sequence depending on their 

“relevance”.



Dot-product attention: illustrated
In dot-product attention, the dot product between every pair of words is used to build a 
custom, context-dependent vector.

But the dot product is still a pretty 
coarse measure of attention.

In theory, we can do this at each 
layer of a neural network.

Can we do better?
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with no recurrent units.
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Introducing transformers
The Transformer is a neural network architecture that uses multi-head self-attention, 
with no recurrent units.

“RNN + Attention—but 
throw out the RNN!”

§ Use a fixed context window.

§ No recurrent connections.

§ Use self-attention.

§ Have multiple attention “heads” 
(multi-head self-attention).

§ Use positional embeddings.

These are new concepts—let’s focus 
on self-attention first.
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In self-attention, the relevance of each word to each other is calculated in context and 
shared, informing the model’s predictions.

Query (Q): representation of current word, used 
to score against all other words in sequence.

Key (K): labels for other words in sequence, 
which we “match” against in our search.

Value (V): represent the “content” of each word, 
which are weighed by attention scores.

A robot must obey the orders given it…
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Here, we’re looking for words that are 
relevant to “it”.

Key for each word is like a label for 
“folders” in a filing cabinet.

Values are the contents of those filing 
cabinets.

https://jalammar.github.io/illustrated-gpt2/


Self-attention: match-making for words
In self-attention, the relevance of each word to each other is calculated in context and 
shared, informing the model’s predictions.

A robot must obey the orders given it…

https://jalammar.github.io/illustrated-gpt2/#part-1-got-and-language-modeling 

To compute attention score, multiply query 
by key vectors for each pair.

(We then normalize and soft-max these 
scores to get a probability distribution.)

https://jalammar.github.io/illustrated-gpt2/


Self-attention: match-making for words
In self-attention, the relevance of each word to each other is calculated in context and 
shared, informing the model’s predictions.

A robot must obey the orders given it…

https://jalammar.github.io/illustrated-gpt2/#part-1-got-and-language-modeling 

To compute attention score, multiply query 
by key vectors for each pair.

Now, multiply (and sum) attention scores 
by value vectors.

https://jalammar.github.io/illustrated-gpt2/


Self-attention: match-making for words
In self-attention, the relevance of each word to each other is calculated in context and 
shared, informing the model’s predictions.

A robot must obey the orders given it…

https://jalammar.github.io/illustrated-gpt2/#part-1-got-and-language-modeling 

To compute attention score, multiply query 
by key vectors for each pair.

Now, multiply (and sum) attention scores 
by value vectors.

This is our new contextualized 
embedding for “it”.

https://jalammar.github.io/illustrated-gpt2/


Self-attention: match-making for words
In self-attention, the relevance of each word to each other is calculated in context and 
shared, informing the model’s predictions.

We compute attention 
scores between each word 

wt and every word that 
comes before it.

https://jalammar.github.io/illustrated-gpt2/#part-1-got-and-language-modeling 

In an auto-regressive 
model, we prevent attention 

from “looking ahead” at 
future words.

In terms of compute time, how 
“efficient” is this process?

It’s quadratic—we must compute 
dot product between every pair 

of tokens in the input.

https://jalammar.github.io/illustrated-gpt2/
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For each word in sequence, compute key, 
query, and value vectors.

Suppose we are computing self-
attention for X3.
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Soft-max these to get attention scores.

Suppose we are computing self-
attention for X3.

https://jalammar.github.io/illustrated-gpt2/


Self-attention: a closer look

https://jalammar.github.io/illustrated-gpt2/#part-1-got-and-language-modeling 

Use attention scores to weigh the value 
vectors.

Suppose we are computing self-
attention for X3.

https://jalammar.github.io/illustrated-gpt2/


Self-attention: a closer look

https://jalammar.github.io/illustrated-gpt2/#part-1-got-and-language-modeling 

The result is a new embedding Y3, 
which “folds in” the relevant 

information from X1 and X2 into X3.

Suppose we are computing self-
attention for X3.

https://jalammar.github.io/illustrated-gpt2/


Self-attention: a closer look

https://jalammar.github.io/illustrated-gpt2/#part-1-got-and-language-modeling 

Where do Q, K, V come from?

https://jalammar.github.io/illustrated-gpt2/


Self-attention: a closer look

https://jalammar.github.io/illustrated-gpt2/#part-1-got-and-language-modeling 

During training, we also learn weight 
matrices WQ, WK, and WV, which we 

multiply by input X.

Learned just like standard 
weights—by iteratively updating 

through back-propagation.

https://jalammar.github.io/illustrated-gpt2/


Self-attention: a closer look

https://jalammar.github.io/illustrated-gpt2/#part-1-got-and-language-modeling 

But self-attention is just one 
component of the Transformer…

https://jalammar.github.io/illustrated-gpt2/


The Transformer “block”
A Transformer “block” contains a self-attention layer, feed-forward layers, residual 
connections, and normalizing layers.

Self-attention: used to compute new, 
context-dependent representations 

for each token. 



The Transformer “block”
A Transformer “block” contains a self-attention layer, feed-forward layers, residual 
connections, and normalizing layers.

The “residual connection” projects directly 
from a lower layer to a higher layer, without 

passing through the intermediate layer.

To implement, add a layer’s input to its 
output before passing it forward.

“dog” + Self-Attention(“dog”)



The Transformer “block”
A Transformer “block” contains a self-attention layer, feed-forward layers, residual 
connections, and normalizing layers.

“Layer normalization” keeps the values 
of a hidden layer within a range that 
facilitates gradient-based training—

similar to a z-score.



The Transformer “block”
A Transformer “block” contains a self-attention layer, feed-forward layers, residual 
connections, and normalizing layers.

These vectors are then passed to a feed-
forward network.

In GPT-2 and GPT-3, this FFN has two layers.

Schematic 
of FFN in 
GPT-3.



The Transformer “block”
A Transformer “block” contains a self-attention layer, feed-forward layers, residual 
connections, and normalizing layers.

Also called decoder 
blocks.

Models like GPT-2 and 
GPT-3 have many of 

these!



The Transformer “block”
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The Transformer “block”
A Transformer “block” contains a self-attention layer, feed-forward layers, residual 
connections, and normalizing layers.

E.g., GPT-2 
“small” has 12 

layers (blocks).

But GPT-2 “XL” 
has 48 layers!



Introducing transformers
The Transformer is a neural network architecture that uses multi-head self-attention, 
with no recurrent units.

“RNN + Attention—but 
throw out the RNN!”

§ Use a fixed context window.

§ No recurrent connections.

§ Use self-attention.

§ Have multiple attention “heads” 
(multi-head self-attention).

§ Use positional embeddings.

We’ve now covered self-attention—
but what’s “multi-head” attention?



Multi-head attention
In multi-head attention, each layer has multiple attention “heads”, each with their own 
set of learnable weights for producing queries, keys, and values.

Each “head” might learn to track 
different kinds of relationships.

When we discuss probing and mechanistic interpretability, we’ll talk 
about research trying to figure out what these heads actually do!

Over-simplified example:

§ Maybe one head tracks syntax.

§ Another head tracks proper names.

§ Another head tracks events… 



Introducing transformers
The Transformer is a neural network architecture that uses multi-head self-attention, 
with no recurrent units.

“RNN + Attention—but 
throw out the RNN!”

§ Use a fixed context window.

§ No recurrent connections.

§ Use self-attention.

§ Have multiple attention “heads” 
(multi-head self-attention).

§ Use positional embeddings.

Okay, but what about the order 
of tokens?

With RNNs, order is built into 
the structure of the network.

Transformers use positional 
embeddings to track order.
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To represent order, input embeddings are combined with positional embeddings specific 
to each position in a sequence.

To learn, begin with random embeddings 
representing each “position” in a 

sequence (1, 2, 3, …)



Positional embeddings track order
To represent order, input embeddings are combined with positional embeddings specific 
to each position in a sequence.

To learn, begin with random embeddings 
representing each “position” in a 

sequence (1, 2, 3, …)

Once learned, we add positional 
embeddings with word embeddings.

Now, composite embeddings reflect both 
word and its position.
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(multi-head self-attention).

§ Use positional embeddings.

These are very complicated 
systems! Still lots to learn about 

why this architecture works.

One practical benefit is (so far) 
transformers are easier to train 

than RNNs.
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Introducing transformers
The Transformer is a neural network architecture that uses multi-head self-attention, 
with no recurrent units.

“RNN + Attention—but 
throw out the RNN!”

§ Use a fixed context window.

§ No recurrent connections.

§ Use self-attention.

§ Have multiple attention “heads” 
(multi-head self-attention).

§ Use positional embeddings.

Under the hood, ChatGPT uses a 
transformer model (plus some other stuff).

GPT = Generative Pre-trained Transformer

So what’s that “pre-trained” word mean…?
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§ “Attention”: high-level introduction and motivation.
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Pre-trained language models
A pre-trained language model is a (large) language model that’s already been trained on 
a large corpus using self-supervision.

§ ”Pre-training” just means training 
without a specific end goal in 
mind (besides word prediction).

§ A “pre-trained” LM can then be 
adapted for specific purposes.

§ Practically, it’s helpful so we don’t 
have to train from scratch!
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Pre-trained language models
A pre-trained language model is a (large) language model that’s already been trained on 
a large corpus using self-supervision.

§ ”Pre-training” just means training 
without a specific end goal in 
mind (besides word prediction).

§ A “pre-trained” LM can then be 
adapted for specific purposes.

§ Practically, it’s helpful so we don’t 
have to train from scratch!

Big corpus

Pre-trained 
LM

Fine-tuning RLHF and 
RLAIF

Prompt 
engineering

“Pre-training”

Adapting pre-
trained LM

This is what we’ll talk 
about next time!



Summary
§ Self-attention is a mechanism that allows each word to “look for” other words that are 

relevant in the input.

§ This process creates new context-dependent vectors that share relevant information 
across the words in the input.

§ Self-attention a key part part of the “transformer block”, which also has other features 
like a feed-forward network.

§ So far, transformers tend to work better than other models like RNNs, and are easier 
and faster to train.

§ “Pre-training” involves training a model (like a transformer) on a large corpus to learn 
the “basics” of how language works.


